
· minimax algorithm: used by most programs
· tries to choose moves that maximize personal gain while minimizing potential loss
· recursive algorithm
·
· evaluation function = base of minimax algorithm
· assigns a weighted score to a chess position based on material, king safety, mobility of pieces, etc.
·

· brute force search essentially = listing out every element of set
· in chess, this is like evaluating all possible positions to a specified depth
· can be implemented easily using minimax algorithm + treeset.
· most comprehensive approach…
· but extremely inefficient.
· For example, using brute force to evaluate only 3 moves ahead is equivalent to evaluating 10 to the 9the power positions.
· though brute force isn’t used, all algorithms essentially are derived from this one, just with some editing(called pruning)

· Minimax is the basis for the algorithm most programs use, which is called negamax, and which will be discussed next slide…

· quiescence search – simple but effective
· you can characterize chess moves in two different types: “quiet” and “noisy”.
· quiet moves: moves which do not make some major change to board(small pawn pushes, positional moves) or more generally, ones that do not change value of board position much
· noisy moves: oppos. of quiet, moves like capturing, threatening, getting out of check
· quiescence search searches noisy moves to more depth than quiet moves.
· horizon effect: problem where a computer that searches all moves to a certain depth misses a game-changing move that happens beyond its depth
· a computer evaluating everything to equal depth misses good moves that happen with further evaluation.
· more akin to the way human players think(they don’t even bother thinking that far ahead for “quiet” moves).

· [bookmark: _GoBack]

e —
i b s 1 o e bl e i .
iyl e

ey g e i et
ey i

e o e, o s oty e v o h
o —

T]

it e e o ke e a0 e
e S ——
i, e e o e s e s
it o g o B S ot e e
e g g e S e o s
Mo aer o

e i h gt s e o v b g
ittt

